线上银河娱乐「诚|信」

    <dd id="0zz7k"></dd>

  1. <th id="0zz7k"></th>

    <rp id="0zz7k"><object id="0zz7k"><input id="0zz7k"></input></object></rp>

    1. Continuous Inverse Optimal Control with Locally Optimal Examples

      Continuous Inverse Optimal Control with Locally Optimal Examples

      Abstract

      Inverse optimal control, also known as inverse reinforcement learning, is the problem of recovering an unknown reward function in a Markov decision process from expert demonstrations of the optimal policy. We introduce a probabilistic inverse optimal control algorithm that scales gracefully with task dimensionality, and is suitable for large, continuous domains where even computing a full policy is impractical. By using a local approximation of the reward function, our method can also drop the assumption that the demonstrations are globally optimal, requiring only local optimality. This allows it to learn from examples that are unsuitable for prior methods.




      线上银河娱乐